Roll No.						

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech (Sem. - 1)

MATHEMATICS-I

Subject Code: BTAM-101-18

M Code: 75353

Date of Examination : 11-01-2023

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each, carrying EIGHT marks each.
- 3. Attempt any FIVE questions from SECTION B & C, selecting atleast TWO questions from each of these SECTIONS B & C.

SECTION-A

- 1. Answer the following:
 - a) Give geometric interpretation of mean value theorem.
 - b) Can Rolle's theorem be applied to the function:

 $f(x) = \begin{cases} x, & 0 \le x \le 1\\ 2-x, & 1 \le x \le 2 \end{cases}$ in the interval $[0, \pi]$.

- c) Evaluate $\lim_{x\to 0} [x^n(\ln x)]$.
- d) Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ exists?
- e) Give the coordinates of the center of gravity of solid of mass *M*.
- f) Define convergence, divergence and oscillation of a series.
- g) Define D'Alembert's ratio test to check the convergence of the positive term series $\sum u_n$.
- h) Find sum and product of Eigen values of the matrix $\begin{bmatrix} 1 & -1 \\ 2 & -5 \end{bmatrix}$.
- i) Find the inverse of the matrix $\begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$.
- j) Find rank of the matrix $\begin{bmatrix} 0 & 1 & -3 \\ 1 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$.

SECTION-B

- 2. a) Expand $f(x) = e^x$ in powers of (x 1) upto four terms.
 - b) Evaluate the limit $\lim_{x \to 0} \frac{e^{x} e^{-x} 2\log(1+x)}{x \sin x}$
- 3. a) Find the volume of the loop generated by the revolving the curve $y^2(a + x) = x^2(3a x)$ about the x axis.
 - b) Find extremum of the function $2\sin x + \cos 2x$, $0 \le x \le 2\pi$.
- 4. a) Discuss the continuity of the function $f(x, y) = \begin{cases} \frac{x^2 + y^2}{xy}, (x, y) \neq (0, 0) \\ 0, \quad (x, y) = (0, 0) \end{cases}$ at (0,0).
 - b) Find extreme values of 2x + 3y + z subject to the conditions x + z = 1 and $x^2 + y^2 = 5$.
- 5. a) Evaluate the integral $\iint_R e^{x^2} dx dy$, where *R* is the region given by $R: 2y \le x \le 2$ and $0 \le y \le 1$
 - b) Evaluate $\iiint_T (x + 3y 2z) dx dy dz$, over the boundary of $T: 0 \le y \le x^2, 0 \le z \le x + y, 0 \le x \le 1$.

SECTION-C

- 6. Examine the convergence of the series $\sum \frac{3 \cdot 6 \cdot 9 \cdots (3n)}{7 \cdot 10 \cdot 13 \cdots (3n+4)} x^n$.
- 7. a) Examine the convergence of the series $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \cdots$
 - b) Examine the convergence of the alternating series $1 \frac{1}{2^k} + \frac{1}{3^k} \frac{1}{4^k} + \cdots$, for k > 0.
- 8. Find the characteristic equation of the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and hence compute A^{-1} . Find the matrix represented by $A^5 4A^4 7A^3 + 11A^2 A 10I$.
- 9. Reduce the matrix $\begin{bmatrix} 5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10 \end{bmatrix}$ to the diagonal form.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.