

Total No. of Questions: 09

B.Tech (Sem. – 1,2) CHEMISTRY-I Subject Code: BTCH- 101-18 M Code: 75343 Date of Examination : 25-01-23

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each, carrying EIGHT marks each.
- 3. Attempt any FIVE questions from SECTION B & C, selecting atleast TWO questions from each of these SECTIONS B & C.

SECTION-A

1. Write briefly:

- a) What is the difference between scattering and reflection?
- b) What is the difference between oxidation number and oxidation state?
- c) What do you understand by substitution/elimination ratio?
- d) Which of the following will show IR spectrum?

0₂, N₂, HI, CO₂

- e) What is standard reduction potential?
- f) What information can be drawn from Ellingham diagrams?
- g) Why d and f orbitals show poor shielding effect?
- h) List the factors on which Δ_0 depends.
- i) The following compounds show only one signal in ¹HNMR. Write their structural formula

$$C_2H_4Br_2C_4H_6$$

j) Indicate R or S configuration at stereogenic center(s). Assign priorities to each group.

SECTION-B

2.	a)	Deduce the time-independent Schrodinger equation.	(6)

- b) Give the significance of wave function. (2)
- 3. a) Under the influence of crystal field, predict the electronic arrangement on the metal ions and nature of ligands in the following complexes:
 - i) $[Fe(H_2O)_6]^{2+}$ ii) $[Fe(CN)_6]^{4-}$ iii) $[Fe(CN)_6]^{3-}$

How many unpaired electrons are there in each complex and what would be their magnetic moments? (6)

- b) What is meant by band theory? What is the difference between conduction band and valence band? (2)
- 4. a) Explain the theory of NMR spectroscopy. (6)
 - b) What is the difference between diffraction and scattering? (2)
- 5. a) Define excluded volume. Show that excluded volume, designated as *b*, is four times the actual volume of gas molecules. (5)
 - b) Calculate the pressure exerted by one mole of CO_2 gas in 1.36 dm³vessel at 48°Cusing van der Waals equation. Given: a = 3.59dm⁶atmmol⁻² and b = 0.0427dm³mol⁻¹. (3)

SECTION-C

- 6. a) What is corrosion? Discuss mechanism of dry corrosion. (5)
 - b) Calculate the standard free energy change (ΔG°) of the reaction:

 $1/2H_2(g) + 1/2I_2(s) \rightarrow HI(g) \quad \Delta H^\circ = 25.95kJ$

The standard entropy of HI(g), $H_2(g)$ and $I_2(s)$ are 206.27, 130.60 and 116.73JK⁻¹mol⁻¹, respectively. Is this reaction feasible at standard state? (3)

- 7. a) Discuss the molecular geometries of the following:
 - i) NH₃
 - ii) SF_6 (Atomic number: N = 7, S = 16) (4)
 - b) What is the difference between oxidation number and oxidation state? (2)
 - c) What is electron affinity? Which element has highest electron affinity? (2)

8.	a)	Discuss the following:	(4)
		i) Enantiomers ii) Diastereomers	
	b)	Discuss isomerism in transitional metal complexes.	(4)
9.	a)	Compare and contrast the S_N1 and S_N2 mechanisms of substitution of alkylhalides.	(4)
	b)	Write short notes on the following organic reactions:	(4)
		i) Cyclization reactions	

ii) Reduction reactions

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.