Roll No.

Total No. of Pages : 02

Total No. of Questions : 18

B.Tech.(CSE) (2018 Batch) (Sem.–3) MATHEMATICS-III Subject Code : BTAM304-18 M.Code : 76438

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Solve the following :

- 1) Evaluate the limit for the function $f(x, y) = \frac{2x y}{2x + y}$ if exists as $(x, y) \to (0, 0)$
- 2) Evaluate the integral $\int_0^1 \int_{y^2}^{1-y} \int_0^{1-x} x dz dx dy$
- 3) Check the convergence of the following sequences whose nth term is given by $a_n = \frac{n^2 + 1}{n^2 1}$
- 4) State Leibnitz test for convergence of an alternating series.
- 5) Write down the Taylor's series expansion for $\ln(1 + x)$ about x = 0.
- 6) Define Clairaut's equation and obtain its general solution.
- 7) Solve the differential equation $\frac{dy}{dx} y \tan x = 3e^{-\sin x}$
- 8) Define Exact differential equation and obtain the necessary condition for M (x, y) dx + N (x, y) dy = 0 to be exact.

9) Solve the differential equation
$$\frac{d^2y}{dx^2} - 14\frac{dy}{dx} + 49y = 0$$

10) Find particular integral for
$$\frac{d^2y}{dx^2} + y = x^2$$

1 | M-76438

SECTION-B

- 11) Find the minimum value of the function $x^2 + y^2 + z^2$ subjected to x + y + z = 3a.
- 12) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dy dx$, by changing into polar coordinates.
- 13) Discuss the convergence of the series : $\frac{1^2}{4^2} + \frac{1^2 5^2}{4^2 8^2} + \frac{1^2 5^2 9^2}{4^2 8^2 12^2} + \dots$ to ∞
- 14) Solve the differential equation :

$$(xy^2 - e^{\frac{1}{x^3}})dx - x^2ydy = 0$$

15) Solve the differential equation $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13y = e^{3x}\sin 4x$

SECTION-C

16) a) Find the interval of convergence for the infinite series : $x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$ to ∞ .

b) Find the area bounded by the parabola $y = x^2$ and line y = 2x + 3

- 17) a) Solve the differential equation $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$.
 - b) Solve the differential equation $xp^2 2yp + x = 0$, where $p = \frac{dy}{dx}$

18) a) Apply method of variation of parameters to solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = e^x \tan x$,

b) Solve
$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 5y = \sin(\ln x)$$

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.