Roll No.

Total No. of Pages: 03

Total No. of Questions: 18

B.Tech. (CSE) (2018 Batch) (Sem.-3)

MATHEMATICS-III

Subject Code: BTAM304-18

M.Code: 76438

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Solve the following:

1. Show that the limit for the function $f(x, y) = \frac{2x - y}{2x + y}$ does not exists as $(x, y) \to (0,0)$.

2. Evaluate the integral $\int_0^1 \int_0^x e^{y/x} dy dx$

3. Check the convergence of the following sequences whose nth term is given by $a_n = \frac{n}{n^2 + 1}$

- 4. State Leibnitz test for convergence of an alternating series $x = \frac{\pi}{2}$
- 5. Write down the Taylor's series expansion for $\cos x$ about $x = \frac{\pi}{2}$.
- 6. Solve by reducing into Clairaut's equation: $y = px + p^2$, where $p = \frac{dy}{dx}$
- 7. Solve the differential equation $\frac{dy}{dx} + y = x$

1 | M-76438 (S2)- **1032**

8. Determine whether the differential equation is exact, if found exact solve it.

$$(x^2 + y^2) dx + 2xydy = 0$$

- 9. Solve the differential equation $16 \frac{d^2 y}{dx^2} 8 \frac{dy}{dx} + 5y = 0$
- 10. Find Particular solution of the differential equation:

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{3x}$$

SECTION-B

- 11. Find the maximum and minimum distance of the point (1, 2, -1) from the sphere $x^2 + y^2 + z^2 = 24$.
- 12. Evaluate $\iint_D e^{-(x^2+y^2)} dy dx$, where D is the region bounded $x^2 + y^2 = 1$
- 13. For what value(s) of x does the series converge (i) conditionally (ii) absolutely?

14. Solve the differential equation by finding integrating factor

$$(xy + 1) y dx + x(1 + xy + x^2y^2) dy = 0$$

15. Solve the differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x$

SECTION-C

- 16. a) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for $p \ge 1$ and diverges for $0 \le p \le 1$.
 - b) Using double integration, find the area bounded between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.

2 | M-76438 (S2)- **1032**

- 17. a) Solve the Bernoulli's equation $\frac{dy}{dx} + \frac{y}{x}y = \frac{y}{x^2}$
 - b) Solve the differential equation $xp^2 2yp + x = 0$, where $p = \frac{dy}{dx}$
- 18. a) Solve by Method of Variation of parameters

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = \frac{e^{2x}}{x}$$

b) Find the complete solution of $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{2x} \sin 2x$

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | M-76438 (S2)- **1032**